Estimates for a single-group design with a continuous outcome variable compared to a reference or population value
Source:R/estimate_mdiff_one.R
estimate_mdiff_one.Rd
Returns object
estimate_mdiff_one
is suitable for a single-group design
with a continuous outcome variable that is compared to a reference
or population value. It can express estimates as mean differences,
standardized mean differences (Cohen's d) or median differences
(raw data only). You can pass raw data or summary data.
Usage
estimate_mdiff_one(
data = NULL,
outcome_variable = NULL,
comparison_mean = NULL,
comparison_sd = NULL,
comparison_n = NULL,
reference_mean = 0,
outcome_variable_name = "My outcome variable",
conf_level = 0.95,
save_raw_data = TRUE
)
Arguments
- data
For raw data - a data frame or tibble
- outcome_variable
For raw data - The column name of the outcome variable, or a vector of numeric data
- comparison_mean
For summary data, a numeric
- comparison_sd
For summary data, numeric > 0
- comparison_n
For summary data, a numeric integer > 0
- reference_mean
Reference value, defaults to 0
- outcome_variable_name
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
- conf_level
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
- save_raw_data
For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object
Value
Returns object of class esci_estimate
overview
outcome_variable_name -
mean -
mean_LL -
mean_UL -
median -
median_LL -
median_UL -
sd -
min -
max -
q1 -
q3 -
n -
missing -
df -
mean_SE -
median_SE -
es_mean
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
es_median
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
raw_data
grouping_variable -
outcome_variable -
es_mean_difference
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
type -
es_median_difference
outcome_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
type -
es_smd
outcome_variable_name -
effect -
effect_size -
LL -
UL -
numerator -
denominator -
SE -
df -
d_biased -
Details
Reach for this function in place of a z-test or one-sample t-test.
Once you generate an estimate with this function, you can visualize
it with plot_mdiff()
and you can test hypotheses with
test_mdiff()
.
The estimated mean differences are from statpsych::ci.mean1()
(renamed
ci.mean as of statpsych 1.6).
The estimated SMDs are from CI_smd_one()
.
The estimated median differences are from statpsych::ci.median1()
(renamed
ci.median as of statpsych 1.6)
Examples
# From raw data
data("data_penlaptop1")
estimate_from_raw <- esci::estimate_mdiff_one(
data = data_penlaptop1[data_penlaptop1$condition == "Pen", ],
outcome_variable = transcription,
reference_mean = 10
)
# To visualize the mean difference estimate
myplot_from_raw <- esci::plot_mdiff(estimate_from_raw, effect_size = "mean")
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
# To conduct a hypothesis test
res_htest_from_raw <- esci::test_mdiff(
estimate_from_raw,
effect_size = "mean",
rope = c(-2, 2)
)
# From summary data
mymean <- 12.09
mysd <- 5.52
myn <- 103
estimate_from_summary <- esci::estimate_mdiff_one(
comparison_mean = mymean,
comparison_sd = mysd,
comparison_n = myn,
reference_mean = 12
)
# To visualize the estimate
myplot_from_sumary <- esci::plot_mdiff(
estimate_from_summary,
effect_size = "mean"
)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
# To conduct a hypothesis test
res_htest_from_summary <- esci::test_mdiff(
estimate_from_summary,
effect_size = "mean",
rope = c(-2, 2)
)