Package index
-
estimate_magnitude()
- Estimates for a continuous variable with no grouping (single-group design)
-
estimate_mdiff_2x2_between()
- Estimates for a 2x2 between-subjects design with a continuous outcome variable
-
estimate_mdiff_2x2_mixed()
- Estimates for a 2x2 mixed factorial design with a continuous outcome variable
-
estimate_mdiff_ind_contrast()
- Estimates for a multi-group design with a continuous outcome variable
-
estimate_mdiff_one()
- Estimates for a single-group design with a continuous outcome variable compared to a reference or population value
-
estimate_mdiff_paired()
- Estimates for a repeated-measures study with two measures of a continuous variable
-
estimate_mdiff_two()
- Estimates for a two-group study with a continuous outcome variable
-
estimate_pdiff_ind_contrast()
- Estimates for a multi-group study with a categorical outcome variable
-
estimate_pdiff_one()
- Estimates for a single-group design with a categorical outcome variable compared to a reference or population value.
-
estimate_pdiff_paired()
- Estimates for a repeated-measures study with two measures of a categorical variable
-
estimate_pdiff_two()
- Estimates for a two-group study with a categorical outcome variable
-
estimate_proportion()
- Estimates for a categorical variable with no grouping (single-group design)
-
estimate_r()
- Estimates the linear correlation (Pearson's r) between two continuous variables
-
estimate_rdiff_two()
- Estimates the difference in correlation for a design with two groups and two continuous outcome variables
-
meta_any()
- Estimate any meta effect.
-
meta_d1()
- Estimate a meta-analytic Cohen's d1 across multiple studies
-
meta_d2()
- Estimate meta-analytic standardized mean difference across multiple two group studies (all paired, all independent, or a mix).
-
meta_mdiff_two()
- Estimate meta-analytic difference in means across multiple two-group studies.
-
meta_mean()
- Estimate a meta-analytic mean across multiple single-group studies.
-
meta_pdiff_two()
- Estimate meta-analytic difference in proportions over multiple studies with two independent groups and a categorical outcome variable.
-
meta_proportion()
- Estimate a meta-analytic proportion of outcomes over multiple studies with a categorical outcome variable.
-
meta_r()
- Estimate meta-analytic Pearson's r across multiple studies with two continuous outcome variables.
-
plot_correlation()
- Plot an estimated Pearson's r value
-
plot_describe()
- Plot a histogram or dotplot of an estimated magnitude with raw data
-
plot_interaction()
- Plot the interaction from a 2x2 design
-
plot_magnitude()
- Plot the mean or median for a continuous variable
-
plot_mdiff()
- Plots for comparing continuous outcome variables between conditions
-
plot_meta()
- Generates a forest plot displaying results of a meta-analysis
-
plot_pdiff()
- Plots for comparing categorical outcome variables between conditions
-
plot_proportion()
- Plot an estimated proportion
-
plot_rdiff()
- Plots for comparing Pearson r values between conditions
-
plot_scatter()
- Generates a scatter plot of data for two continuous variables
-
test_correlation()
- Test a hypothesis about the strength of a Pearson's r correlation
-
test_mdiff()
- Test a hypothesis about a difference in a continuous outcome variable.
-
test_pdiff()
- Test a hypothesis about a difference in proportion
-
test_rdiff()
- Test a hypothesis about a difference in correlation strength
-
data_altruism_happiness
- Altruism Happiness - Ch12 - from Brethel-Haurwitz and Marsh (2014)
-
data_anchor_estimate_ma
- Anchor Estimate ma - Ch9 - Many Labs replications of Jacowitz and Kahneman (1995)
-
data_basol_badnews
- Basol badnews - Ch07 - from Basol et al. (2020)
-
data_bem_psychic
- Bem Psychic - Ch13 - from Bem and Honorton (1994)
-
data_bodywellf
- BodyWellF - Ch12 - Body Satisfaction and Well-being data for females from Figure 11.24 right panel
-
data_bodywellfm
- BodyWellFM - Ch12 - Body Satisfaction and Well-being data from Figure 11.1
-
data_bodywellm
- BodyWellM - Ch12 - Body Satisfaction and Well-being data for males from Figure 11.24 left panel
-
data_campus_involvement
- Campus Involvement - Ch11 - for End-of-Chapter Exercise 11.7
-
data_chap_8_paired_ex_8.18
- Fictitious data from an unrealistically small HEAT study comparing scores for a single group of students before and after a workshop on climate change.
-
data_clean_moral
- Clean moral - Ch07 - from Schnall et al. (2008), Study 1, and Johnson et al. (2014)
-
data_college_survey_1
- College survey 1 - Ch03 - for End-of-Chapter Exercise 3.3
-
data_college_survey_2
- College survey 2 - Ch05 - for End-of-Chapter Exercise 5.4
-
data_damischrcj
- DamischRCJ - Ch9 - from 6 Damisch studies, and Calin-Jageman and Caldwell (2014)
-
data_effronraj_fakenews
- EffronRaj fakenews - Ch8 - from Effron and Raj (2020)
-
data_emotion_heartrate
- Emotion heartrate - Ch8 - from Lakens (2013)
-
data_exam_scores
- Exam Scores - Ch11 - for End-of-Chapter Exercise 11.2
-
data_flag_priming_ma
- Flag Priming ma - Ch9 - Many Labs replications of Carter et al. (2011)
-
data_gender_math_iat
- Gender math IAT - Ch07 - Ithaca and SDSU replications of Nosek et al. (2002)
-
data_gender_math_iat_ma
- Gender math IAT ma - Ch9 - Many Labs replications of Nosek et al. (2002)
-
data_halagappa
- Halagappa - Ch14 - from Halagappa et al. (2007)
-
data_home_prices
- Home Prices - Ch12 - for End-of-Chapter Exercise 12.2
-
data_kardas_expt_3
- Kardas Expt 3 - Ch07 - from Kardas and O'Brien (2018), Experiment 3
-
data_kardas_expt_4
- Kardas Expt 4 - Ch07 - from Kardas and O'Brien (2018), Experiment 4
-
data_labels_flavor
- Labels flavor - Ch8 - from Floretta-Schiller et al. (2015)
-
data_latimier_3groups
- Latimier 3Groups - Ch14 - 3 groups in Latimier et al. (2019)
-
data_latimier_prequiz
- Latimier Prequiz - Ch03 - Prequiz group in Latimier et al. (2019)
-
data_latimier_quiz
- Latimier Quiz - Ch03 - Quiz group in Latimier et al. (2019)
-
data_latimier_quiz_prequiz
- Latimier Quiz Prequiz - Ch07 - Quiz and Prequiz groups in Latimier et al. (2019)
-
data_latimier_reread
- Latimier Reread - Ch03 - Reread group in Latimier et al. (2019)
-
data_latimier_reread_prequiz
- Latimier Reread Prequiz - Ch07 - Reread and Prequiz groups in Latimier et al. (2019)
-
data_latimier_reread_quiz
- Latimier Reread Quiz - Ch07 - Reread and Quiz groups in Latimier et al. (2019)
-
data_macnamara_r_ma
- Macnamara r ma - Ch11 - from Macnamara et al. (2014)
-
data_mccabemichael_brain
- McCabeMichael brain - Ch9 - from Michael et al. (2013)
-
data_mccabemichael_brain2
- McCabeMichael brain2 - Ch9 - from Michael et al. (2013)
-
data_meditationbrain
- MeditationBrain - Ch15 - from Holzel et al. (2011)
-
data_organicmoral
- OrganicMoral - Ch14 - from Eskine (2013)
-
data_penlaptop1
- % transcription scores from pen and laptop group of Meuller et al., 2014
-
data_powerperformance_ma
- PowerPerformance ma - Ch9 - from Burgmer and Englich (2012), and Cusack et al. (2015)
-
data_rattanmotivation
- RattanMotivation - Ch14 - from Rattan et al. (2012)
-
data_religionsharing
- ReligionSharing - Ch14 - RETRACTED DATA used in End-of-Chapter Exercise 14.3
-
data_religious_belief
- Religious belief - Ch03 - for End-of-Chapter Exercise 3.5
-
data_selfexplain
- SelfExplain - Ch15 - from McEldoon et al. (2013)
-
data_simmonscredibility
- SimmonsCredibility - Ch14 - from Simmons and Nelson (2020)
-
data_sleep_beauty
- Sleep Beauty - Ch11 - for End-of-Chapter Exercise 11.6
-
data_smithrecall
- SmithRecall - Ch15 - from Smith et al. (2016)
-
data_stickgold
- Stickgold - Ch06 - from Stickgold et al. (2000)
-
data_studystrategies
- StudyStrategies - Ch14 - from O'Reilly et al. (1998)
-
data_thomason_1
- Thomason 1 - Ch11 - from Thomason 1
-
data_videogameaggression
- VideogameAggression - Ch15 - from Hilgard (2015)
-
overview()
- Calculates descriptive statistics for a continuous variable
-
overview_nominal()
- Calculates descriptive statistics for a numerical variable
-
CI_diamond_ratio()
- Estimate the diamond ratio for a meta-analytic effect, a measure of heterogeneity
-
CI_smd_ind_contrast()
- Estimate standardized mean difference (Cohen's d) for an independent groups contrast
-
CI_smd_one()
- Estimate standardized mean difference (Cohen's d1) for a single group
-
jamovicorrelation()
- Correlations: Single Group
-
jamovidescribe()
- Describe
-
jamovimagnitude()
- Means and Medians: Single Group
-
jamovimdiff2x2()
- Means and Medians: 2x2 Factorial
-
jamovimdiffindcontrast()
- Means and Medians: Independent Groups Contrast
-
jamovimdiffpaired()
- Means and Medians: Paired
-
jamovimdifftwo()
- Means and Medians: Two Groups
-
jamovimetamdiff()
- Meta-Analysis: Difference in Means
-
jamovimetamean()
- Meta-Analysis: Means
-
jamovimetapdiff()
- Meta-Analysis: Difference in Proportions
-
jamovimetaproportion()
- Meta-Analysis: Proportions
-
jamovimetar()
- Meta-Analysis: Correlations
-
jamovipdiffpaired()
- Proportions: Paired
-
jamovipdifftwo()
- Proportions: Two Groups
-
jamoviproportion()
- Proportions: Single Group
-
jamovirdifftwo()
- Correlations: Two Groups
-
geom_meta_diamond_h()
- Meta-analysis diamond
-
esci_plot_difference_axis_x()
- Add a difference axis to the x axis of an esci forest plot
-
print(<esci_estimate>)
- Print an esci_estimate