Package index
-
estimate_magnitude() - Estimates for a continuous variable with no grouping (single-group design)
-
estimate_mdiff_2x2_between() - Estimates for a 2x2 between-subjects design with a continuous outcome variable
-
estimate_mdiff_2x2_mixed() - Estimates for a 2x2 mixed factorial design with a continuous outcome variable
-
estimate_mdiff_ind_contrast() - Estimates for a multi-group design with a continuous outcome variable
-
estimate_mdiff_one() - Estimates for a single-group design with a continuous outcome variable compared to a reference or population value
-
estimate_mdiff_paired() - Estimates for a repeated-measures study with two measures of a continuous variable
-
estimate_mdiff_two() - Estimates for a two-group study with a continuous outcome variable
-
estimate_pdiff_ind_contrast() - Estimates for a multi-group study with a categorical outcome variable
-
estimate_pdiff_one() - Estimates for a single-group design with a categorical outcome variable compared to a reference or population value.
-
estimate_pdiff_paired() - Estimates for a repeated-measures study with two measures of a categorical variable
-
estimate_pdiff_two() - Estimates for a two-group study with a categorical outcome variable
-
estimate_proportion() - Estimates for a categorical variable with no grouping (single-group design)
-
estimate_r() - Estimates the linear correlation (Pearson's r) between two continuous variables
-
estimate_rdiff_two() - Estimates the difference in correlation for a design with two groups and two continuous outcome variables
-
meta_any() - Estimate any meta effect.
-
meta_d1() - Estimate a meta-analytic Cohen's d1 across multiple studies
-
meta_d2() - Estimate meta-analytic standardized mean difference across multiple two group studies (all paired, all independent, or a mix).
-
meta_mdiff_two() - Estimate meta-analytic difference in means across multiple two-group studies.
-
meta_mean() - Estimate a meta-analytic mean across multiple single-group studies.
-
meta_pdiff_two() - Estimate meta-analytic difference in proportions over multiple studies with two independent groups and a categorical outcome variable.
-
meta_proportion() - Estimate a meta-analytic proportion of outcomes over multiple studies with a categorical outcome variable.
-
meta_r() - Estimate meta-analytic Pearson's r across multiple studies with two continuous outcome variables.
-
plot_correlation() - Plot an estimated Pearson's r value
-
plot_describe() - Plot a histogram or dotplot of an estimated magnitude with raw data
-
plot_interaction() - Plot the interaction from a 2x2 design
-
plot_magnitude() - Plot the mean or median for a continuous variable
-
plot_mdiff() - Plots for comparing continuous outcome variables between conditions
-
plot_meta() - Generates a forest plot displaying results of a meta-analysis
-
plot_pdiff() - Plots for comparing categorical outcome variables between conditions
-
plot_proportion() - Plot an estimated proportion
-
plot_rdiff() - Plots for comparing Pearson r values between conditions
-
plot_scatter() - Generates a scatter plot of data for two continuous variables
-
test_correlation() - Test a hypothesis about the strength of a Pearson's r correlation
-
test_mdiff() - Test a hypothesis about a difference in a continuous outcome variable.
-
test_pdiff() - Test a hypothesis about a difference in proportion
-
test_rdiff() - Test a hypothesis about a difference in correlation strength
-
data_altruism_happiness - Altruism Happiness - Ch12 - from Brethel-Haurwitz and Marsh (2014)
-
data_anchor_estimate_ma - Anchor Estimate ma - Ch9 - Many Labs replications of Jacowitz and Kahneman (1995)
-
data_basol_badnews - Basol badnews - Ch07 - from Basol et al. (2020)
-
data_bem_psychic - Bem Psychic - Ch13 - from Bem and Honorton (1994)
-
data_bodywellf - BodyWellF - Ch12 - Body Satisfaction and Well-being data for females from Figure 11.24 right panel
-
data_bodywellfm - BodyWellFM - Ch12 - Body Satisfaction and Well-being data from Figure 11.1
-
data_bodywellm - BodyWellM - Ch12 - Body Satisfaction and Well-being data for males from Figure 11.24 left panel
-
data_campus_involvement - Campus Involvement - Ch11 - for End-of-Chapter Exercise 11.7
-
data_chap_8_paired_ex_8.18 - Fictitious data from an unrealistically small HEAT study comparing scores for a single group of students before and after a workshop on climate change.
-
data_clean_moral - Clean moral - Ch07 - from Schnall et al. (2008), Study 1, and Johnson et al. (2014)
-
data_college_survey_1 - College survey 1 - Ch03 - for End-of-Chapter Exercise 3.3
-
data_college_survey_2 - College survey 2 - Ch05 - for End-of-Chapter Exercise 5.4
-
data_damischrcj - DamischRCJ - Ch9 - from 6 Damisch studies, and Calin-Jageman and Caldwell (2014)
-
data_effronraj_fakenews - EffronRaj fakenews - Ch8 - from Effron and Raj (2020), v1.1
-
data_emotion_heartrate - Emotion heartrate - Ch8 - from Lakens (2013)
-
data_exam_scores - Exam Scores - Ch11 - for End-of-Chapter Exercise 11.2
-
data_flag_priming_ma - Flag Priming ma - Ch9 - Many Labs replications of Carter et al. (2011)
-
data_gender_math_iat - Gender math IAT - Ch07 - Ithaca and SDSU replications of Nosek et al. (2002)
-
data_gender_math_iat_ma - Gender math IAT ma - Ch9 - Many Labs replications of Nosek et al. (2002)
-
data_halagappa - Halagappa - Ch14 - from Halagappa et al. (2007)
-
data_home_prices - Home Prices - Ch12 - for End-of-Chapter Exercise 12.2
-
data_kardas_expt_3 - Kardas Expt 3 - Ch07 - from Kardas and O'Brien (2018), Experiment 3
-
data_kardas_expt_4 - Kardas Expt 4 - Ch07 - from Kardas and O'Brien (2018), Experiment 4
-
data_labels_flavor - Labels flavor - Ch8 - from Floretta-Schiller et al. (2015)
-
data_latimier_3groups - Latimier 3Groups - Ch14 - 3 groups in Latimier et al. (2019)
-
data_latimier_prequiz - Latimier Prequiz - Ch03 - Prequiz group in Latimier et al. (2019)
-
data_latimier_quiz - Latimier Quiz - Ch03 - Quiz group in Latimier et al. (2019)
-
data_latimier_quiz_prequiz - Latimier Quiz Prequiz - Ch07 - Quiz and Prequiz groups in Latimier et al. (2019)
-
data_latimier_reread - Latimier Reread - Ch03 - Reread group in Latimier et al. (2019)
-
data_latimier_reread_prequiz - Latimier Reread Prequiz - Ch07 - Reread and Prequiz groups in Latimier et al. (2019)
-
data_latimier_reread_quiz - Latimier Reread Quiz - Ch07 - Reread and Quiz groups in Latimier et al. (2019)
-
data_macnamara_r_ma - Macnamara r ma - Ch11 - from Macnamara et al. (2014)
-
data_mccabemichael_brain - McCabeMichael brain - Ch9 - from Michael et al. (2013)
-
data_mccabemichael_brain2 - McCabeMichael brain2 - Ch9 - from Michael et al. (2013)
-
data_meditationbrain - MeditationBrain - Ch15 - from Holzel et al. (2011)
-
data_organicmoral - OrganicMoral - Ch14 - from Eskine (2013)
-
data_penlaptop1 - % transcription scores from pen and laptop group of Meuller et al., 2014
-
data_powerperformance_ma - PowerPerformance ma - Ch9 - from Burgmer and Englich (2012), and Cusack et al. (2015)
-
data_rattanmotivation - RattanMotivation - Ch14 - from Rattan et al. (2012)
-
data_religionsharing - ReligionSharing - Ch14 - RETRACTED DATA used in End-of-Chapter Exercise 14.3
-
data_religious_belief - Religious belief - Ch03 - for End-of-Chapter Exercise 3.5
-
data_selfexplain - SelfExplain - Ch15 - from McEldoon et al. (2013)
-
data_simmonscredibility - SimmonsCredibility - Ch14 - from Simmons and Nelson (2020)
-
data_sleep_beauty - Sleep Beauty - Ch11 - for End-of-Chapter Exercise 11.6
-
data_smithrecall - SmithRecall - Ch15 - from Smith et al. (2016)
-
data_stickgold - Stickgold - Ch06 - from Stickgold et al. (2000)
-
data_studystrategies - StudyStrategies - Ch14 - from O'Reilly et al. (1998)
-
data_thomason_1 - Thomason 1 - Ch11 - from Thomason 1
-
data_videogameaggression - VideogameAggression - Ch15 - from Hilgard (2015)
-
overview() - Calculates descriptive statistics for a continuous variable
-
overview_nominal() - Calculates descriptive statistics for a numerical variable
-
CI_diamond_ratio() - Estimate the diamond ratio for a meta-analytic effect, a measure of heterogeneity
-
CI_smd_ind_contrast() - Estimate standardized mean difference (Cohen's d) for an independent groups contrast
-
CI_smd_one() - Estimate standardized mean difference (Cohen's d1) for a single group
-
jamovicorrelation() - Correlations: Single Group
-
jamovidescribe() - Describe
-
jamovimagnitude() - Means and Medians: Single Group
-
jamovimdiff2x2() - Means and Medians: 2x2 Factorial
-
jamovimdiffindcontrast() - Means and Medians: Independent Groups Contrast
-
jamovimdiffpaired() - Means and Medians: Paired
-
jamovimdifftwo() - Means and Medians: Two Groups
-
jamovimetamdiff() - Meta-Analysis: Difference in Means
-
jamovimetamean() - Meta-Analysis: Means
-
jamovimetapdiff() - Meta-Analysis: Difference in Proportions
-
jamovimetaproportion() - Meta-Analysis: Proportions
-
jamovimetar() - Meta-Analysis: Correlations
-
jamovipdiffpaired() - Proportions: Paired
-
jamovipdifftwo() - Proportions: Two Groups
-
jamoviproportion() - Proportions: Single Group
-
jamovirdifftwo() - Correlations: Two Groups
-
geom_meta_diamond_h() - Meta-analysis diamond
-
esci_plot_difference_axis_x() - Add a difference axis to the x axis of an esci forest plot
-
print(<esci_estimate>) - Print an esci_estimate