Estimates for a two-group study with a categorical outcome variable
Source:R/estimate_pdiff_two.R
estimate_pdiff_two.Rd
Returns object
estimate_pdiff_two
is suitable for a simple two-group design
with a categorical outcome variable. It provides estimates and CIs for the
difference in proportions between the two groups, the odds ratio, and phi.
You can pass raw data or summary data.
Usage
estimate_pdiff_two(
data = NULL,
outcome_variable = NULL,
grouping_variable = NULL,
comparison_cases = NULL,
comparison_n = NULL,
reference_cases = NULL,
reference_n = NULL,
case_label = 1,
not_case_label = NULL,
grouping_variable_levels = NULL,
outcome_variable_name = "My outcome variable",
grouping_variable_name = "My grouping variable",
conf_level = 0.95,
count_NA = FALSE
)
Arguments
- data
For raw data - a data frame or tibble
- outcome_variable
For raw data - The column name of the outcome variable which is a factor, or a vector that is a factor
- grouping_variable
For raw data - The column name of the grouping variable which is a factor, or a vector that is a factor
- comparison_cases
For summary data, a numeric integer >= 0
- comparison_n
For summary data, a numeric integer >= comparison_events
- reference_cases
For summary data, a numeric integer >= 0
- reference_n
For summary data, a numeric integer >= reference_events
- case_label
An optional numeric or character label for the case level.
- not_case_label
An optional numeric or character label for the not case level.
- grouping_variable_levels
For summary data - An optional vector of 2 group labels
- outcome_variable_name
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
- grouping_variable_name
Optional friendly name for the grouping variable. Defaults to 'My grouping variable' or the grouping variable column name if a data.frame is passed.
- conf_level
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
- count_NA
Logical to count NAs (TRUE) in total N or not (FALSE)
Value
Returns object of class esci_estimate
es_proportion_difference
type -
outcome_variable_name -
case_label -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
SE -
effect_size_adjusted -
ta_LL -
ta_UL -
es_odds_ratio
outcome_variable_name -
case_label -
grouping_variable_name -
effect -
effect_size -
SE -
LL -
UL -
ta_LL -
ta_UL -
overview
grouping_variable_name -
grouping_variable_level -
outcome_variable_name -
outcome_variable_level -
cases -
n -
P -
P_LL -
P_UL -
P_SE -
P_adjusted -
ta_LL -
ta_UL -
es_phi
grouping_variable_name -
outcome_variable_name -
effect -
effect_size -
SE -
LL -
UL -
Details
Once you generate an estimate with this function, you can visualize
it with plot_mdiff()
and you can test hypotheses with
test_mdiff()
.
The estimated mean differences are from statpsych::ci.prop2()
.
The estimated odds ratio is from statpsych::ci.oddsratio()
.
The estimated correlation (phi) is from statpsych::ci.phi()
.
Examples
data("data_campus_involvement")
estimate_from_raw <- esci::estimate_pdiff_two(
esci::data_campus_involvement,
CommuterStatus,
Gender
)
# To visualize the estimate
myplot_from_raw <- esci::plot_pdiff(estimate_from_raw)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
# To conduct a hypothesis test
res_htest_from_raw <- esci::test_pdiff(estimate_from_raw)
# From summary_data
estimate_from_summary <- esci::estimate_pdiff_two(
comparison_cases = 10,
comparison_n = 20,
reference_cases = 78,
reference_n = 252,
grouping_variable_levels = c("Original", "Replication"),
conf_level = 0.95
)
# To visualize the estimate
myplot_from_summary <- esci::plot_pdiff(estimate_from_summary)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#' # To conduct a hypothesis test
res_htest_from_summary <- esci::test_pdiff(estimate_from_summary)