This function calculates basic descriptive statistics for a numerical variable. It can calculate an overall summary, or broken down by the levels of a grouping variable. Inputs can be summary data, vectors, or a data frame.
Usage
overview(
data = NULL,
outcome_variable = NULL,
grouping_variable = NULL,
means = NULL,
sds = NULL,
ns = NULL,
grouping_variable_levels = NULL,
outcome_variable_name = "My Outcome Variable",
grouping_variable_name = NULL,
conf_level = 0.95,
assume_equal_variance = FALSE
)
Arguments
- data
for raw data, a data frame or tibble
- outcome_variable
for raw data, either a vector containing numerical data or the name of a data-frame column containing a factor
- grouping_variable
optional; for raw data either a vector containing a factor or the name of a data frame column containing a factor
- means
For summary data - A vector of 1 or more numerical means
- sds
For summary data - A vector of standard deviations, same length as means
- ns
For summary data - A vector of sample sizes, same length as means
- grouping_variable_levels
For summary data - An optional vector of group labels, same length as means. If not passed, auto-generated.
- outcome_variable_name
Optional friendly name for the outcome variable. Defaults to 'My Outcome Variable'. Ignored if a data-frame is passed, this argument is ignored.
- grouping_variable_name
Optional friendly name for the grouping variable. If a data frame is passed, this argument is ignored.
- conf_level
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
- assume_equal_variance
Defaults to FALSE
Value
Returns a table of descriptive statistics
overview
outcome_variable_name -
grouping_variable_name -
grouping_variable_level -
mean -
mean_LL -
mean_UL -
median -
median_LL -
median_UL -
sd -
min -
max -
q1 -
q3 -
n -
missing -
df -
mean_SE -
median_SE -
Details
If equal variance is not assumed, each group is treated independently. In
that case, the estimated mean, CI, and SE is from statpsych::ci.mean1()
,
and the estimated median, CI, and SE is from statpsych::ci.median1()
. If
equal variance is assumed, each group CI is calculated as with respect to all
group data, using statpsych::ci.lc.mean.bs()
and
statpsych::ci.lc.median.bs()
Examples
# example code
esci::overview(data_latimier_3groups, "Test%", "Group")
#> outcome_variable_name grouping_variable_name grouping_variable_level mean
#> 1 Test% Group Reread 37.29323
#> 2 Test% Group Quiz 42.75689
#> 3 Test% Group Prequiz 37.14286
#> mean_LL mean_UL median median_LL median_UL sd min max
#> 1 34.17500 40.41146 33.33333 28.79785 37.86881 15.30716 9.52381 76.19048
#> 2 38.96548 46.54830 42.85714 36.05392 49.66036 18.61177 14.28571 95.23810
#> 3 33.88967 40.39604 33.33333 31.06559 35.60107 15.96965 9.52381 90.47619
#> q1 q3 n missing df mean_SE median_SE
#> 1 28.57143 47.61905 95 0 94 1.570482 2.314063
#> 2 28.57143 57.14286 95 0 94 1.909527 3.471095
#> 3 23.80952 42.85714 95 0 94 1.638451 1.157033