Test a hypothesis about the strength of a Pearson's r correlation
Source:R/hypothesis_evaluation.R
test_correlation.Rd
test_correlation
is suitable for testing a hypothesis about a
the strength of correlation between two continuous variables (designs
in which Pearson's r is a suitable measure of correlation).
Usage
test_correlation(estimate, rope = c(0, 0), output_html = FALSE)
Arguments
- estimate
An esci_estimate object generated by the estimate_r function
- rope
A two-element vector defining the Region of Practical Equivalence (ROPE). Specify c(0, 0) to test a point null of exactly 0. Specify any two ascending values between -1 and 1 to test an interval null (e.g. c(.25, .45) to test the hypothesis that Pearson's r in the population (rho) is between .25 and .45).
- output_html
TRUE to return results in HTML; FALSE (default) to return standard output
Value
Returns a list with 1-2 data frames
point_null - always returned
test_type - 'Nil hypothesis test', meaning a test against H0 = 0
outcome_variable_name - Name of the outcome variable
effect - Label for the effect being tested
null_words - Express the null in words
confidence - Confidence level, integer (95 for 95%, etc.)
LL - Lower boundary of the confidence% CI for the effect
UL - Upper boundary of the confidence% CI for the effect
CI - Character representation of the CI for the effect
CI_compare - Text description of relation between CI and null
t - If applicable, t value for hypothesis test
df - If applicable, degrees of freedom for hypothesis test
p - If applicable, p value for hypothesis test
p_result - Text representation of p value obtained
null_decision - Text represention of the decision for the null
conclusion - Text representation of conclusion to draw
significant - TRUE/FALSE if significant at alpha = 1-CI
interval_null - returned only if an interval null is specified
test_type - 'Practical significance test', meaning a test against an interval null
outcome_variable_name -
effect - Name of the outcome variable
rope - Test representation of null interval
confidence - Confidence level, integer (95 for 95%, etc.)
CI - Character representation of the CI for the effect
rope_compare - Text description of relation between CI and null interval
p_result - Text representation of p value obtained
conclusion - Text representation of conclusion to draw
significant - TRUE/FALSE if significant at alpha = 1-CI
Details
This function can be passed an esci_estimate object generated by
estimate_r()
.
It can test hypotheses about a specific value for the difference (a point null) or about a range of values (an interval null)
Examples
# example code
estimate <- esci::estimate_r(r = 0.536, n = 50)
# Test against a point null of exactly 0
test_correlation(estimate)
#> $properties
#> $properties$effect_size_name
#> [1] "r"
#>
#> $properties$alpha
#> [1] 0.05
#>
#> $properties$interval_null
#> [1] FALSE
#>
#> $properties$rope
#> [1] 0 0
#>
#> $properties$rope_units
#> [1] "raw"
#>
#>
#> $point_null
#> test_type outcome_variable_name
#> 1 Nil Hypothesis Test My x variable and My y variable
#> effect null_words confidence LL UL
#> 1 My x variable and My y variable 0.00 95 0.2978573 0.7058914
#> CI CI_compare t df
#> 1 95% CI [0.2978573, 0.7058914] The 95% CI does not contain H_0 4.103289 48
#> p p_result null_decision
#> 1 4.073183e-05 p < 0.05 Reject H_0
#> conclusion significant
#> 1 At α = 0.05, 0.00 is not a plausible value of Ͱ TRUE
#>
# Test against an interval null (-0.1, 0.1)
test_correlation(estimate, rope = c(-0.1, 0.1))
#> $properties
#> $properties$effect_size_name
#> [1] "r"
#>
#> $properties$alpha
#> [1] 0.05
#>
#> $properties$interval_null
#> [1] TRUE
#>
#> $properties$rope
#> [1] -0.1 0.1
#>
#> $properties$rope_units
#> [1] "raw"
#>
#>
#> $point_null
#> test_type outcome_variable_name
#> 1 Nil Hypothesis Test My x variable and My y variable
#> effect null_words confidence LL UL
#> 1 My x variable and My y variable 0.00 95 0.2978573 0.7058914
#> CI CI_compare t df
#> 1 95% CI [0.2978573, 0.7058914] The 95% CI does not contain H_0 4.103289 48
#> p p_result null_decision
#> 1 4.073183e-05 p < 0.05 Reject H_0
#> conclusion significant
#> 1 At α = 0.05, 0.00 is not a plausible value of Ͱ TRUE
#>
#> $interval_null
#> test_type outcome_variable_name
#> 1 Practical significance test My x variable and My y variable
#> effect rope confidence
#> 1 My x variable and My y variable (-0.10, 0.10) 95
#> CI
#> 1 95% CI [0.2978573, 0.7058914]\n90% CI [0.3391487, 0.6820747]
#> rope_compare p_result conclusion
#> 1 95% CI fully outside H_0 p < 0.05 At α = 0.05, conclude Ͱ is substantive
#> significant
#> 1 TRUE
#>