Estimates for a multi-group study with a categorical outcome variable
Source:R/estimate_pdiff_ind_contrast.R
estimate_pdiff_ind_contrast.Rd
Returns object
estimate_pdiff_ind_contrast
is suitable for a multi-group design
(between subjects) with a categorical outcome variable. It accepts
a user-defined set of contrast weights that allows estimation of any
1-df contrast. It can express estimates as a difference in proportions
and as an odds ratio (2-group designs only). You can pass raw data or
summary data.
Usage
estimate_pdiff_ind_contrast(
data = NULL,
outcome_variable = NULL,
grouping_variable = NULL,
cases = NULL,
ns = NULL,
contrast = NULL,
case_label = 1,
grouping_variable_levels = NULL,
outcome_variable_name = "My outcome variable",
grouping_variable_name = "My grouping variable",
conf_level = 0.95,
count_NA = FALSE
)
Arguments
- data
For raw data - a data frame or tibble
- outcome_variable
For raw data - The column name of the outcome variable which is a factor, or a vector that is a factor
- grouping_variable
For raw data - The column name of the grouping variable which is a factor, or a vector that is a factor
- cases
For summary data - A numeric vector of 2 or more event counts, each an integer >= 0
- ns
For summary data - A numeric vector of sample sizes, same length as counts, each an integer >= corresponding event count
- contrast
A vector of group weights, same length as number of groups.
- case_label
An optional numeric or character label For summary data, used as the label and defaults to 'Affected'. For raw data, used to specify the level used for the proportion.
- grouping_variable_levels
For summary data - An optional vector of group labels, same length as cases
- outcome_variable_name
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
- grouping_variable_name
Optional friendly name for the grouping variable. Defaults to 'My grouping variable' or the grouping variable column name if a data.frame is passed.
- conf_level
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
- count_NA
Logical to count NAs (TRUE) in total N or not (FALSE)
Value
Returns object of class esci_estimate
es_proportion_difference
type -
outcome_variable_name -
case_label -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
SE -
effect_size_adjusted -
ta_LL -
ta_UL -
es_odds_ratio
outcome_variable_name -
case_label -
grouping_variable_name -
effect -
effect_size -
SE -
LL -
UL -
ta_LL -
ta_UL -
overview
grouping_variable_name -
grouping_variable_level -
outcome_variable_name -
outcome_variable_level -
cases -
n -
P -
P_LL -
P_UL -
P_SE -
P_adjusted -
ta_LL -
ta_UL -
es_phi
grouping_variable_name -
outcome_variable_name -
effect -
effect_size -
SE -
LL -
UL -
Details
Once you generate an estimate with this function, you can visualize
it with plot_mdiff()
and you can test hypotheses with
test_mdiff()
.
The estimated proportion differences are from statpsych::ci.lc.prop.bs()
.
The estimated odds ratios (if returned) are from statpsych::ci.oddsratio()
.
Examples
# From raw data
data("data_campus_involvement")
estimate_from_raw <- esci::estimate_pdiff_ind_contrast(
esci::data_campus_involvement,
CommuterStatus,
Gender,
contrast = c("Male" = -1, "Female" = 1)
)
# To visualize the estimate
myplot_from_raw <- esci::plot_pdiff(estimate_from_raw)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
# To conduct a hypothesis test
res_htest_from_raw <- esci::test_pdiff(estimate_from_raw)
# From summary data
estimate_from_summary <- esci::estimate_pdiff_ind_contrast(
cases = c(78, 10),
ns = c(252, 20),
case_label = "egocentric",
grouping_variable_levels = c("Original", "Replication"),
contrast = c(-1, 1),
conf_level = 0.95
)
# To visualize the estimate
myplot_from_summary <- esci::plot_pdiff(estimate_from_summary)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
# To conduct a hypothesis test
res_htest_from_summary <- esci::test_pdiff(estimate_from_summary)