Estimates the difference in correlation for a design with two groups and two continuous outcome variables
Source:R/estimate_rdiff_two.R
estimate_rdiff_two.Rd
Returns object
estimate_rdiff_two
is suitable for a simple two-group design
with two continuous outcome variables where you want to estimate the
difference in the strength of the relationship between the two groups.
It estimate the linear correlation (Pearson's r) for each group and the
difference in r, along with confidence intervals. You can
pass raw data or summary data.
Returns effect sizes appropriate for estimating the linear relationship between two quantitative variables
Usage
estimate_rdiff_two(
data = NULL,
x = NULL,
y = NULL,
grouping_variable = NULL,
comparison_r = NULL,
comparison_n = NULL,
reference_r = NULL,
reference_n = NULL,
grouping_variable_levels = NULL,
x_variable_name = "My x variable",
y_variable_name = "My y variable",
grouping_variable_name = "My grouping variable",
conf_level = 0.95,
save_raw_data = TRUE
)
Arguments
- data
For raw data - a dataframe or tibble
- x
For raw data - The column name of the outcome variable, or a vector of numeric data
- y
For raw data - The column name of the outcome variable, or a vector of numeric data
- grouping_variable
For raw data, a vector that is a factor or the name of a factor column from data
- comparison_r
For summary data, a pearson's r correlation coefficient
- comparison_n
For summary data - An integer > 0
- reference_r
For summary data, a pearson's r correlation coefficient
- reference_n
For summary data - An integer > 0
- grouping_variable_levels
For summary data - An optional vector of 2 group labels
- x_variable_name
Optional friendly name for the x variable. Defaults to 'My x variable' or the outcome variable column name if a data frame is passed.
- y_variable_name
Optional friendly name for the y variable. Defaults to 'My y variable' or the outcome variable column name if a data frame is passed.
- grouping_variable_name
Optional friendly name for the grouping variable. Defaults to 'My grouping variable' or the grouping variable column name if a data.frame is passed.
- conf_level
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
- save_raw_data
For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object
Value
Returns object of class esci_estimate
overview
outcome_variable_name -
grouping_variable_name -
grouping_variable_level -
mean -
mean_LL -
mean_UL -
median -
median_LL -
median_UL -
sd -
min -
max -
q1 -
q3 -
n -
missing -
df -
mean_SE -
median_SE -
es_r_difference
type -
grouping_variable_name -
grouping_variable_level -
x_variable_name -
y_variable_name -
effect -
effect_size -
LL -
UL -
SE -
n -
df -
ta_LL -
ta_UL -
rz -
sem -
z -
p -
es_r
grouping_variable_name -
grouping_variable_level -
x_variable_name -
y_variable_name -
effect -
effect_size -
LL -
UL -
SE -
n -
df -
ta_LL -
ta_UL -
raw_data
x -
y -
grouping_variable -
Details
Once you generate an estimate with this function, you can visualize
it with plot_rdiff()
and you can test hypotheses with
test_rdiff()
. In addition, you can use plot_scatter()
to visualize the raw data.
The estimated single-group r values are from statpsych::ci.cor()
.
The difference in r values is from statpsych::ci.cor2()
.
Examples
# From raw data
data("data_campus_involvement")
estimate_from_raw <- esci::estimate_rdiff_two(
esci::data_campus_involvement,
GPA,
SWB,
Gender
)
# To visualize the difference in r
myplot_from_raw <- esci::plot_rdiff(estimate_from_raw)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
# To visualize the data (scatterplot) by group
myplot_scatter <- esci::plot_scatter(estimate_from_raw)
# To evaluate a hypothesis (by default: point null of exaclty 0):
res_htest_from_raw <- esci::test_rdiff(
estimate_from_raw
)
# From summary data
estimate <- esci::estimate_rdiff_two(
comparison_r = .53,
comparison_n = 45,
reference_r = .41,
reference_n = 59,
grouping_variable_levels = c("Females", "Males"),
x_variable_name = "Satisfaction with life",
y_variable_name = "Body satisfaction",
grouping_variable_name = "Gender",
conf_level = .95
)
myplot_from_summary <- esci::plot_rdiff(estimate)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
# To evaluate a hypothesis (interval null from -0.1 to 0.1):
res_htest_from_summary <- esci::test_rdiff(
estimate,
rope = c(-0.1, 0.1)
)