Estimates for a two-group study with a continuous outcome variable
Source:R/estimate_mdiff_two.R
estimate_mdiff_two.Rd
Returns object
estimate_mdiff_two
is suitable for a simple two-group design
with a continuous outcome variable. It provides estimates and CIs for the
population mean difference between the repeated measures, the standardized
mean difference (SMD; Cohen's d) between the repeated measures, and the
median difference between the repeated measures (raw data only). You can
pass raw data or summary data.
Usage
estimate_mdiff_two(
data = NULL,
outcome_variable = NULL,
grouping_variable = NULL,
comparison_mean = NULL,
comparison_sd = NULL,
comparison_n = NULL,
reference_mean = NULL,
reference_sd = NULL,
reference_n = NULL,
grouping_variable_levels = NULL,
outcome_variable_name = "My outcome variable",
grouping_variable_name = "My grouping variable",
conf_level = 0.95,
assume_equal_variance = FALSE,
save_raw_data = TRUE,
switch_comparison_order = FALSE
)
Arguments
- data
For raw data - a data.frame or tibble
- outcome_variable
For raw data - The column name of the outcome variable, or a vector of numeric data
- grouping_variable
For raw data - The column name of the grouping variable, or a vector of group names
- comparison_mean
For summary data, a numeric
- comparison_sd
For summary data, numeric > 0
- comparison_n
For summary data, a numeric integer > 0
- reference_mean
For summary data, a numeric
- reference_sd
For summary data, numeric > 0
- reference_n
For summary data, a numeric integer > 0
- grouping_variable_levels
For summary data - An optional vector of 2 group labels
- outcome_variable_name
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
- grouping_variable_name
Optional friendly name for the grouping variable. Defaults to 'My grouping variable' or the grouping variable column name if a data.frame is passed.
- conf_level
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
- assume_equal_variance
Defaults to FALSE
- save_raw_data
For raw data; defaults to TRUE; set to FALSE to save memory by not returning raw data in estimate object
- switch_comparison_order
Defaults to FALSE
Value
Returns object of class esci_estimate
es_mean_difference
type -
outcome_variable_name -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
SE -
df -
ta_LL -
ta_UL -
es_median_difference
type -
outcome_variable_name -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
SE -
ta_LL -
ta_UL -
es_smd
outcome_variable_name -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
numerator -
denominator -
SE -
df -
d_biased -
es_mean_ratio
outcome_variable_name -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
comparison_mean -
reference_mean -
es_median_ratio
outcome_variable_name -
grouping_variable_name -
effect -
effect_size -
LL -
UL -
comparison_median -
reference_median -
overview
outcome_variable_name -
grouping_variable_name -
grouping_variable_level -
mean -
mean_LL -
mean_UL -
median -
median_LL -
median_UL -
sd -
min -
max -
q1 -
q3 -
n -
missing -
df -
mean_SE -
median_SE -
raw_data
grouping_variable -
outcome_variable -
Details
Reach for this function in place of an independent-samples t-test.
Once you generate an estimate with this function, you can visualize
it with plot_mdiff()
and you can test hypotheses with
test_mdiff()
.
The estimated mean differences are from statpsych::ci.mean2()
.
The estimated SMDs are from CI_smd_ind_contrast()
.
The estimated median differences are from statpsych::ci.median2()
.
Examples
# From raw data
data("data_penlaptop1")
estimate_from_raw <- esci::estimate_mdiff_two(
data = data_penlaptop1,
outcome_variable = transcription,
grouping_variable = condition,
switch_comparison_order = TRUE,
assume_equal_variance = TRUE
)
# To visualize the estimated median difference (raw data only)
myplot_from_raw <- esci::plot_mdiff(
estimate_from_raw,
effect_size = "median"
)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using alpha for a discrete variable is not advised.
# To conduct a hypothesis test
res_htest_from_raw <- esci::test_mdiff(
estimate_from_raw,
effect_size = "median",
rope = c(-2, 2)
)
# From summary data
estimate_from_summary <- esci::estimate_mdiff_two(
comparison_mean = 12.09,
comparison_sd = 5.52,
comparison_n = 103,
reference_mean = 6.88,
reference_sd = 4.22,
reference_n = 48,
grouping_variable_levels = c("Ref-Laptop", "Comp-Pen"),
outcome_variable_name = "% Transcription",
grouping_variable_name = "Note-taking type",
assume_equal_variance = TRUE
)
# To visualize the estimated mean difference
myplot <- esci::plot_mdiff(
estimate_from_summary,
effect_size = "mean"
)
#> Warning: Using size for a discrete variable is not advised.
#> Warning: Using size for a discrete variable is not advised.
# To conduct a hypothesis test
res_htest_from_summary <- esci::test_mdiff(
estimate_from_summary,
effect_size = "mean",
rope = c(-2, 2)
)