Estimates for a categorical variable with no grouping (single-group design)
Source:R/estimate_proportion.R
estimate_proportion.Rd
estimate_proportion
is suitable for a single group design with a
categorical outcome variable. It estimates the population proportion
for the frequency of each level of the outcome variable, with confidence
intervals. You can pass raw data or summary data.
Usage
estimate_proportion(
data = NULL,
outcome_variable = NULL,
cases = NULL,
case_label = 1,
outcome_variable_levels = NULL,
outcome_variable_name = "My outcome variable",
conf_level = 0.95,
count_NA = FALSE
)
Arguments
- data
For raw data - a data frame or tibble
- outcome_variable
For raw data - The column name of the outcome variable, which must be a factor, or a vector that is a factor
- cases
For summary data - A vector of cases
- case_label
A numeric or string indicating which level of the factor to estimate. Defaults to 1, meaning first level is analyzed
- outcome_variable_levels
For summary data - optional vector of 2 characters indicating name of the count level and name of the not count level. Defaults to "Affected" and "Not Affected"
- outcome_variable_name
Optional friendly name for the outcome variable. Defaults to 'My outcome variable' or the outcome variable column name if a data frame is passed.
- conf_level
The confidence level for the confidence interval. Given in decimal form. Defaults to 0.95.
- count_NA
Logical to count NAs (TRUE) in total N or not (FALSE)
Value
Returns an object of class esci_estimate
overview
outcome_variable_name -
outcome_variable_level -
cases -
n -
P -
P_LL -
P_UL -
P_SE -
P_adjusted -
ta_LL -
ta_UL -
es_proportion
outcome_variable_name -
case_label -
effect -
effect_size -
LL -
UL -
SE -
effect_size_adjusted -
ta_LL -
ta_UL -
cases -
n -
Details
Once you generate an estimate with this function, you can visualize
it with plot_proportion()
.
If you want to compare your estimate to a known value or reference, then
use estimate_pdiff_one()
.
The estimated proportions are from statpsych::ci.prop1()
(renamed
ci.prop as of statpsych 1.6).
Examples
# From raw data
data("data_campus_involvement")
estimate_from_raw <- esci::estimate_proportion(
esci::data_campus_involvement,
CommuterStatus
)
# To visualize the estimate
myplot_from_raw <- esci::plot_proportion(estimate_from_raw)
# From summary data
estimate_from_summary <- esci::estimate_proportion(
cases = c(8, 22-8),
outcome_variable_levels = c("Affected", "Not Affected")
)
# To visualize the estimate
myplot_from_summary<- esci::plot_proportion(estimate_from_summary)